Fisher's exact test
Definition
$$p=\frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{n}{a+c}}=\frac{(a+b)!(c+d)!(a+c)!(b+d)!}{(a!)(b!)(c!)(d!)(n!)}$$
R script
package: fisher.test {stats}
original function prototype
fisher.test(
x,
y = NULL,
workspace = 200000,
hybrid = FALSE,
control = list(),
or = 1,
alternative = c("two.sided","greater","less"),
conf.int = TRUE,
conf.level = 0.95,
simulate.p.value = FALSE,
B = 2000
)
- Example in R
# prepare data
Testing <- matrix(
c(1, 11, 9, 3),
nrow = 2,
dimnames = list(
behavior = c("Dieting", "Non-dieting"),
sex = c("Men", "Women")
)
)
# the data
# sex
# behavior Men Women
# Dieting 1 9
# Non-dieting 11 3
# start to calculate fisher's exact test and get p.value
fisher.test(Testing, alternative = "less")$p.value